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INTRODUCTION 
This paper discusses a Bayesian analy- 

sis of a model in which it is possible to 
have full probability and quota sampling 
within the same set of primary sampling 
units for the same survey. 

The study was inspired by the analysis 
of biased measurement in the textbook of 
Pratt, Raiffa and Schlaifer (1965), but in 
order to better approximate the sampling 
procedures actually employed in survey re- 
search, that simple model has been consid- 
erably elaborated upon,resulting in optimi- 
zation formulas that are more complicated. 

We consider the following specifica- 
tion: 

xuij = + 
uij 

(2.1) 

Xbik i Ebik 

j= 1,2,....,nu 
k = 1,2,....,nb 
i = 1,2,....,p 

= E(Ebik) = 0 

E = E ( 

-E(EUijbik) 
= (2.3) 

Xuij and Xbik are observations from 
unbiased (probability) and biased (quota) 
measurement processes, respectively. 

is a random effect that is held in 
common by all observations, biased or not, 
in the ith PSU. 

Euij is a second -stage disturbance 
term unique to the jth observation in the 
full probability sample within the ith PSU. 

Ebik is correspondingly a second -stage 
random disturbance in quota sampling. 

and are respectively the expec- 
ted values of the xuij and xbik, and 

=41u -obis the bias. 
Define 

(2.2) 

= 

= 
E(Ebik) (2.4) 

= 

the variances of the random components 
on the right hand side of (2.1). It follows 
that 

V (X ) = v + v 
uij c u 

+ vb (2.5) 

and Cov(x , 

uij Xbi ) k 
Summarizing, our model assumes that p 

PSUs are randomly selected and that either 
full probability or quota sampling or both 
methods are applied to the units within 
each PSU. The within -PSU sample sizes nu 
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and nb are constant across PSUs. Further- 

more, it is assumed that both probability 

and quota observations are subject to the 

same random PSU effect; i.e., the bias con- 

ditional on PSU i is equal to the uncondi- 

tional bias, - The latter assumption 

implies that if, for example, a certain PSU 

has mean income that is higher than the 

national average, the same random ef- 
fect is present among the responses in quo- 

ta sampling,although the within PSU average 

incomes for probability and quota sampling 

may differ substantially because of the 

fundamental bias, - 

Finally, we realize that actual survey 

practice involves sampling from finite pop- 

ulations, but for simplicity, we treat the 

selected PSUs as independent. Further, we 

assume that the within PSU observations in 

the samples of sizes nu and are indepen- 

dent conditional on 
PRIOR -TO- POSTERIOR ANALYSIS 

Assume that the prior distribution of 

(uu, is bivariate normal with mean and 

varianc 

V 
uu 

b ub 

where is the prior covariance of and 

Define 

(3.1) 

n 
u 

x = E /Pn (3.2) 

u i j =1 ui u 

. the arithmetic mean of the unbiased obser- 

vations, and 

- p 
E Xbik 

/Pnb ' 
(3.3) 

i =1 k =1 
the arithmetic mean of the quota sample. 

Then the mean and variance of 

xb)t, conditional on is 

E 

V 
u 

(3.4) 

+ vu/Pnu vc/P 

v/P 



If we assume that the and 

Ebik are normally distributed with p, nu, 

and nb, all > 0, then xb)t is condi- 
tionally bivariate normal. With nonnormal 
random components,the central limit theorem 
can be invoked to treat the sample means as 
approximately normal and approximately suf- 
ficient for 

Define 

and 

H = 

u 
Hu b 

nuvcvb + nbvcvu 

u u 

V' V' 
ub bb 

+ vuvb)-1 

-pnunbvc 

-1 

+vu 

, (3.5) 

, (3.6) 

H" = H' + H. (3.7) 

It follows from the standard Bayesian 
development for the bivariate normal case 
that and have a joint posterior dis- 
tribution that is normal, with mean and 
variance 

= ' u' u H + H 

xb 

] 

V" 
ub H". (3.8) 

Vbl 

The posterior expectation of is of 

particular interest to us, and straight- 
forward algebra yields 

X" = X' + W (x - x') 
u u u _u u 

+ wb(xb , (3.9) 

where 
wu = (nuvcvb +nbvcvu +vuvb) 

[V" 
pnunbvc +vb) V" pnunbvc] 

and (3.10) 

= (nuvcvb+nbvcvu+vuvb) 

[V" pnb(nuvc +vu) - V" pnunbvc] . 

Thus, depending on the posterior co- 
variance structure, the posterior expecta- 
tion of the mean of the unbiased process is 
affected by sample deviations of both the 
probability and quota means from their re- 
spective prior expectations. 

In subsequent developments we shall 
require the posterior variance of 

Vuu = (Huu 
- Hub -1. 

(3.11) 

It will be more convenient to work 
with the posterior precision, which, sub- 
stituting from (3.5) and (3.6), can be 
written in the form 

vüu1 = u /v, (3.12) 

where 

u = (Huu 
Hbb - H'2)(nuvcvb +nbvcvu +vuvb) 

+ p 
2 

+ (3.13) 
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+ Hbbpnu(vb+nbvc) + 2 

and 
+vuvb) (3.14) 

+ pnnbc 

It can be shown that if nb is zero, 
implying a design that is totally devoted 
to unbiased sample selection, expressions 
(3.9) through (3.14) collapse to the usual 
univariate normal result. 

OPTIMUM ALLOCATION OF A FIXED BUDGET 
Consider a survey in which the princi- 

pal task is point estimation of but for 

which the economic resources available are 

a fixed dollar amount k *. (This is not an 

uncommon situation in actual practice.) 
Defining 

the cost of "setting up" a staff 

for this survey in a single PSU, 

ku the per unit cost of a within -PSU 
probability observation, 

and kb the per unit cost of a quota ob- 
servation, (4.1) 

we write 
k* kcp + + kbpnb. (4.2) 

It is assumed that elements of fixed cost 
for planning, overall supervision, etc., 

have been subtracted out of k *. 
With a quadratic loss function of the 

error in estimating-)1u, the optimum Baye- 
sian estimator is the posterior mean. 
The posterior expected loss is proportional 
to the posterior variance of We shall 

consider the case where vc, and are 

known, and will be used to estimate 

Given the fixed amount k *, we wish to allo- 

cate it between probability and quota sam- 

ple observations in such a way as to maxi- 
mize the preposterior variance of the 

controllable factor in the expected net 
gain from sampling (ENGS). Since 

V(x") = Vuu - Vuu , 

(4.3) 

we must choose p, the number of PSUs, nu 

and nb in order to minimize given in 

(3.11) above, within the fixed budget k *. 

Using (4.2) to express nb in terms of 
p and nu, we substitute in (3.13) and 

(3.14) and rearrange to get 

u = pvu(IH'Ivbk. - IH'Ivckc + H' k *) 

and 

- p2Huuvukc + 

+ nu[PIH. vuku) 

+ pvck*(Húu+Hbb+2Hüb) 

+ p2(Hbbvbkb Huuvuku+k*) 

- p2v k (H' 
uu b 

p3k ] 

nu 
2 kuvc(H+Hbb+2Húb) 

+ p3ku] 

(4.4) 

= pvu[Hbb(vbkb-vckc) + k*] 

- p2vukc + 

+ nu [pvc (Hbb [vbkb-vuku] 
+ k*) 



- p2(vckc +vuku)] - n2p2vcku. (4.5) 

The desired approach is to maximize 
the posterior precision (3.12) by differen- 
tiating with respect to p and nu, and set- 

ting the partial derivatives equal to zero. 
The resulting equations are very complica- 
ted, however, and a simultaneous solution 
for nu and p will require numerical methods 
of analysis. In the following, we shall 
concentrate on the optimal choice of nu for 
a fixed value of p, the number of PSUs, and 
then explore through examples, the effect 
of changes in p. We shall be especially 
interested in a p of about 100 because in 
typical surveys, as alluded to above, this 
may be a practical maximum that an organ- 
ization can support in ongoing sampling op- 
erations. From the other side, there may 
be nonstatistical pressure to have at least 
that number of PSUs in order to satisfy de- 
mands for information from regional inter- 
est groups. In certain other survey situa- 
tions, there may be reasons for keeping p 
small. For example, in the evaluation of a 
government poverty program with serious po- 
litical implications, it may be desirable 
to keep the study down to 5 or 10 metropo- 
litan areas for reasons outside of the sta- 
tistician's control. 

Differentiating (3.12) with respect to 
nu, and using (4.4) and (4.5) to define u 
and v, we set 

vdu - udv = 0 (4.6) 

The result is a quadratic equation in 

nu, 

an 
2 

+ bn +c= 
+ u 

(4.7) 

where 

a = p4 + 2p3vc(Hbb + Hbb) 

+ (4.8) 

and 

b = 2p4gc + 2p3[2vcgc(Hbb+Hu10) 

- - 
q*] 

+ 2p2vc[(vcgc-vbgb)(Hbb+Hub)2 

- 2q* ] 

- 2pvcq*(Hbb+Hbb)2, 

= p4gc + 

- - q*] 

p2[vbgb(2q*Hbb - 
2 

) 

+ q*2 - 4vcgeq*(Hbb+Hub) 

+ 

of an unbiased observation: 

qb 

qc kc /u 
and q* = k */ku. 

In analyzing the effect of prior para- 

meters on the optimal allocation between 

full probability and quota sampling for a 

fixed value of p, there is no loss in gen- 

erality from assuming that q 0. Thus, 

(4.9) and(4.10) are simplifies to 

b = +q *) 

- 
+Hub) + q *] 

- 2pvcq *(Hbb 
(4.12) 

(4.11) 

and 

c 

+ 2pvcq *(Hbb +vbgb 
bb) 

+ v2q 
*2(Hbb 

+H' )2. (4.13) 

Using (4.8), (4.12) and (4.13), it can 

be shown through considerable algebraic 

manipulation that b2 - 4ac is a perfect 

square, x2, such that 

x = 2p(vb +Hub) 

(vbgbHbb+vu 
Hub 

+g*) 

+ (4.14) 

Thus the two roots of (4.7), when qc = 0, 
are given by 

nu ( -b + x) /2a, or (4.15) 

nu 
+q* ) 

+ bbu +H ) {vg[(1+ bb 

+ (1 + v v q )13' ] (4.16) 
u b b 

+ (2 + *} 

+ *(1+ +H' ) 

2 
]/a* 

where 

a* p3 + 2p2vc(Hbb +H ) (4.17) 

(4.9) + 

We shall call a solution to (4.15) 

"feasible" if it falls in the range 
[0, q * /p], where q */p is the maximum al- 
lowed by the budget constraint. When one 
root is in the feasible range the other is 
either negative or exceeds q * /p, and the 
precision is maximized when n equals the 
feasible nu. If both roots are greater 
than q * /p, the optimal sample allocation is 
nu q * /p. If one root is negative and the 
other greater than q * /p, the best alloca- 
tion is nu 0. The number of observations 
to be selected by quota methods in each PSU 
is from (4.2) and (4.11) 

(4.10) 

+ 2pvcg* [(Hbb+H) (q*+vbgbHbb) 

- + vcq*2(Hbb+H:lb)2. 

In (4.8), (4.9) and (4.10) the costs are 

expressed relative to ku, the per unit cost 
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(q* (4.18) 



SENSITIVITY ANALYSIS 
The complexity of expressions (4.16) 

and (4.17) makes any formal analysis of the 
effects of prior parameters on nu a near 
impossible task. We shall, however, exam- 
ine some interesting special cases,and con- 
sider a few examples: 
a. The case of p = 1, v,, = O. 

This is the model of Pratt, Raiffa and 
Schleifer. 
From (4.16) and (4.17) we have 

- - nu = q 
* 
+ vuvb H, ub). 

(6.1) 
We must consider the following poss- 
ible situations 
(1) 

Hbb 
> q in which 

case both roots o (4.7) are 
greater than q *, the total bud- 
get. The optimal allocation is 
to put all resources into full 
probability sampling, nu = q 

O. 

(2) 
1q- 

- HL)> q *, 

in which case one root of (4.7) 

is greater than q* and the other 
is negative. The optimal alloca- 
tion is to use the total budget 
for quota sampling; 

= q * /qb, nu = O. 

(3) 0 < I - Hbb) * 
The optimal allocation is 

nu = q* - 

and 

v (v v -q I - H' 
b u b b bb (6.2) 

b. The case of and independent a 
kriori. 

and uncorrelated implies that 
V' = Vúu. Then from substitution of 
(Hbb in (4.16) , 

nu 
b 

+ q /p 

(6.3) 

Note that the PSU component of the 
process variance, vc, has no effect on 
the sample allocation. (It does, how- 
ever, have a marked effect on the pos- 
terior variance.) It is clear that 

nu /p (6.4) 

is the only feasible root within the budget 
constraint, and that nu < q */p requires 

> 1. (6.5) 

It is instructive to assume that vu 
and write (6.4) as 

nu = (q * /p) V')p. 
(6.6) 

We see that nu is only slightly de- 
creased through by a reduction in the 
relative cost of quota sampling, whereas a 
large or high prior correlation between 
5u and can have more direct impact. 
With the assumption vu = vb, we can express 
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vb and Vbb in terms of 

vb = 

Vbb = c 
2 
V' . (6.7) 

It follows from the case specification, 

V' 
Vu , that 

c2 (6.8) 

and from (6.6) 

nu (q*/P)+Pabc1gb(gb-1)/(1-pub)P. 

(6.9) 

Hence the optimal allocation is invar- 
iant given q *, p, the ratio of vb = vu 
to Vúu, and the prior correlation, be- 

tween and 
We also see that the optimal nu, rela- 

tive to its maximum possible value, is 

1 + 1) /(1- (6.10) 

which does not depend on p. 
In order to examine this case further, 

in Table 2 we display the values of n that 
are optimal for various combinations cl 
and given 

p = 100, qb = .1, q* 1600, 

= Vúb = 
1. (6.11) 

pc = /(vc + vb) = O. 

The magnitudes of V' and p do not 
affect the allocation given by (b.9) but 
they are necessary in order to evaluate the 
posterior variance. For the problem of es- 
timating the proportion of a dichotomous 
population possessing one of the attributes 
V' = 1 could well represent an approximate 
"vague" or diffuse prior for known to 
lie in [0, 1] . 

The q* = 1600 is a typical total sam- 
ple size for a household survey, spread 
over 100 PSUs. 

Table 2 shows that in the example of 

the dichotomous population, where it is un- 

likely that v = v would be much greater 
than .1, one must have a prior 

pub 
beyond 

the range of the table for any quota sam- 

pling to be desirable. 
Table 3 shows the posterior precision 

relative to the optimum if the survey plan- 
ner were to ignore Table 2 and devote all 

of his resources to quota sampling, with 
nb 160 (qb = .1). 

Consider the example of cl = 0.1 and 

pub = 0.95. Vúu 1 implies vb v 
u 

= 0.1 

and Vbb 1.10803. It can be shown in 
(3.11) - (3.14) that with the optimal allo- 
cation, n = 16, the posterior standard de- 
viation is 

V = 0.0079. 
uu 

The relative precision of full quota 
sampling, shown in Table 3 as 0.001 is, 
more exactly, equal to 

0.000641. 



2. VALUES OF nu DETERMINED BY cl AND pub. 

(p=100, q*=1600, vu, pc=0, Vúu 1, i.e. 0. 

Pub 

.100 .300 .500 .700 .800 .900 .950 .990 .995 .999 

.01 16 16 16 16 16 16 16 16 16 16 

.1 16 16 16 16 16 16 16 16 16 16 

.3 16 16 16 16 16 16 16 16 16 16 

5 16 16 16 16 16 16 16 16 16 15 
.7 16 16 16 16 16 16 16 16 16 15 
1 16 16 16 16 16 16 16 16 16 15 

10 16 16 16 16 16 16 16 15 14 5 

25 16 16 16 16 16 16 15 13 11 0 

100 16 16 16 16 16 15 14 5 0 0 

1000 16 16 15 14 12 7 0 0 0 0 

3. PRECISION OF TOTAL QUOTA SAMPLING RELATIVE 
TO OPTIMUM ALLOCATION SHOWN IN TABLE 2 

Pub 

cl .100 .300 .500 .700 .800 .900 .950 .990 .995 .999 

.01 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 

.1 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.006 0.031 

.3 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.009 0.019 0.093 

.5 0.000 0.000 0.000 0.001 0.001 0.002 0.003 0.016 0.031 0.145 

.7 0.000 0.000 0.001 0.001 0.001 0.002 0.004 0.022 0.044 0.195 

1 0.001 0.001 0.001 0.001 0.002 0.003 0.006 0.031 0.062 0.265 

10 0.006 0.007 0.008 0.012 0.017 0.033 0.063 0.265 0.456 0.967 
25 0.016 0.017 0.021 0.030 0.043 0.081 0.148 0.532 0.781 1.000 
100 0.059 0.065 0.078 0.115 0.162 0.271 0.457 0.966 1.000 1.000 

1000 0.388 0.422 0.482 0.625 0.758 0.951 1.000 1.000 1.000 1.000 

Thus, if the optimal allocation is not 
obeyed, and maximum quota sampling blindly 
applied, the posterior standard deviation 
of will be 0.312 in spite of the seem- 
ingly high prior correlation, pub = 0.95. 
Positive intra -PSU correlation, i.e., >0, 

will increase the relative efficiency of 
total quota sampling; but does not reduce 
the posterior standard deviation. For ex- 
ample, with pc .5, for the cl 0.1, 

= 
0.95 combination with optimum nu, 

= 0.0326, 

whereas if full quota sampling were em- 
ployed the efficiency would be 0.0108 with 

= 0.313, 

a negligible change from the case of 0. 

In Tables 2 and 3, consider an example 
where some quota sampling is desirable, as 
with c 10 and 0.999. Table 3 shows 
that for that combination (with p 0) to- 
tal quota sampling has an efficiency of 
0.967. But the main idea in quota sampling 
is to save money, hence we might ask, "What 
if the budget q* were cut in half, making 
possible only 8 full probability or 80 quo- 
ta observations per PSU ?" Comparison of 
variances shows that with total quota samp- 
ling at half the budget, the precision will 
be 0.782 times the optimum at full budget. 
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If, however, the new reduced budget were to 
be totally devoted to full probability sam- 
pling, the efficiency would be only 0.205. 
Since 8000 observations is a very large 

sample, we might consider working with one - 
eighth of the original budget or q* 200, 
yielding 20 quota observations per PSU. In 
that case the efficiency drops to 0.365, 
but the posterior standard deviation of 
is still as small as 0.083. u 
c. and correlated, Pc > 0. 

In the more general situation of 
> 0, (i.e., and pc > 0, 

we must use formulas (4.16) and (4.17) for 
nu, and the simplicity and invariance of 
the previous case are lost. In the full 
report of this work we examine several ex- 
amples that illustrate this case, but re- 
strictions of space do not permit discus- 
sion here. 

CONCLUSION 
The examples in this paper, as well as 

many others examined by the author by means 
of the time -sharing computer, indicate that 
the optimal use of quota sampling, even 
with a small number of PSUs, requires very 
high prior.correlations between and jib 

and large variances of the measurement pro- 
cesses. Relative cost appears to have lit- 
tle impact on the results. It should come 
as no great surprise that in order to jus- 



tify quota sampling, one ought to believe 
the process means to be correlated, but 

just how high a correlation is necessary 
may be of some interest. 

Two final remarks: 

1. First, we have discussed a model 

in which one of the measurement processes 

is unbiased, i.e. can be estimated with- 

out systematic error. In the light of in- 

creasing difficulties in eliciting response 
in household surveys, even under the best 

conditions, one wonders how many survey re- 

searchers would accept the realism of the 

model. 
2. Secondly, our model has not really 

encompassed the case that leads to certain 
uses of quota sampling, especially in the 

surveying of current public opinion. Here 

quota methods are employed because there 

simply is not enough calendar time to get 
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high response through follow -ups. In terms 
of our model, ku is infinite (or at least 
greater than k * /p). Political pollsters 
are able to demonstrate the accuracy of 
their estimates by comparison with actual 
election returns, and their records are im- 
pressive. Can sociologists, urban planners, 
and market researchers who do not face e- 
qually severe timetables be sure of the 
magnitudes and directions of the biases in 
their use of quota sampling? 

Bayesian methods are valuable, not be- 

cause anyone seriously believes that a pri- 
or distribution is easy to assess, nor that 
it is psychologically stationary,but rather 
because these methods help the decision ma- 
ker to better understand the implications 
of actions that he might otherwise choose 
out of habit, convenience, or questionable 
advice. 


